Alkanes (Teacher Resource)

Alkanes are carbon molecules with single bonds between carbon atoms and all other bonds filled with hydrogen. These molecules are saturated with hydrogen. (See Table 1 for classifications of alkanes.) The number of carbon atoms per molecule determines the state of matter for the compound and its usefulness.

Table 1: Alkanes (C _n H _{2n+2})				
Number of Carbon Atoms	Name	Formula	Structural Formula	
1	Methane	CH ₄	Н Н-С-Н Н	
2	Ethane	C ₂ H ₆	НН Н-С-С-Н НН	
3	Propane	C_3H_8	ННН Н-С-С-С-Н ННН	
4	Butane	C ₄ H ₁₀	НННН Н-С-С-С-С-Н НННН	
5	Pentane	C ₅ H ₁₂	ННННН H-C-C-C-C-H ННННН	
6	Hexane	C ₆ H ₁₄	НННННН Н-С-С-С-С-С-Н НННННН	
7	Heptane	C ₇ H ₁₆	ННННННН Н-С-С-С-С-С-С-Н НННННН	
8	Octane	C ₈ H ₁₈	НННННННН Н-С-С-С-С-С-С-С-Н ННННННН	
9	Nonane	C ₉ H ₂₀	H H H H H H H H H H-Ċ-Ċ-Ċ-Ċ-Ċ-Ċ-Ċ-Ċ-H H H H H H H H H H	
10	Decane	C ₁₀ H ₂₂	H H H H H H H H H H H-Ċ-Ċ-Ċ-Ċ-Ċ-Ċ-Ċ-Ċ-Ċ-H H H H H H H H H H H	

 KC^4 Science © 2008 Kent ISD

Alkanes (Teacher Resource continued)

(See Table 2.) Alkanes with 1-4 carbon atoms per molecule are gases which are used for heating, cooking, lighters, and torches. Alkanes with 5-7 carbon atoms per molecule are liquids with low boiling points that are used as solvents. Alkanes with 6-18 carbon atoms per molecule are liquids and are components of gasoline. Alkanes with 12-24 carbon atoms per molecule are liquids and are components of jet fuel and portable stove fuel. Alkanes with 18-50 carbon atoms per molecule are high-boiling point liquids used for lubricants, diesel fuel, or heating oil. Alkanes with 50 or more carbon atoms per molecule are solid or semi-solid and are found in waxes and petroleum jelly. Alkanes are named for the longest continuous chain of carbon atoms in the compound.

Table 2: Uses of Alkanes				
Number of Carbon Atoms	State	Uses		
1-4	Gas	heating and cooking fuel		
5-7	Low-Boiling Liquids	solvents, gasoline		
6-18	Liquids	gasoline		
12-24	Liquids	jet fuel, portable stove fuel		
18-50	High-Boiling Liquids	diesel fuel, lubricants, heating oil		
50+	Solids	petroleum jelly, paraffin		

 KC^4 Science © 2008 Kent ISD